

CONSTRUCTION, INFRASTRUCTURE SECURITY & ENERGY INNOVATIONS IN ICT RELATED PROJECTS

WEBINAR 17th March 2023

Welcome

Stephan Corvers CEO & Founder

Corvers Procurement Services BV

Introduction & Agenda

House rules

It is possible to ask questions in the private chat

The recording of the webinar will be made available on the EAFIP website

The list of participants will not be disseminated

In case there are technical problems, the session will be recorded and published

AGENDA

DAY 2 - 17 th March 12:45 to 14:45 CET (online) Construction, Infrastructure Security & Energy Innovations in ICT Related Projects				
TIME (CET)	ТОРІС	SPEAKER/PARTICIPANTS		
12:40 - 12:45	Registration to the platform	Participants can ensure that the platform's functionalities are working fine		
12:45 – 12:50	Welcome & Introduction House rules Agenda	Stephan Corvers CEO – Corvers Lieve Bos EC Policy Officer - DG Connect		
12:50 - 13:15	Pre-Commercial Procurement of efficient construction and energy breakthrough innovative technologies	Katarzyna Lenart National Center for Research and Development, Poland		
13:15 – 13:45	Sustainable Reconstruction of the Motorway A6, developing calculation tools and monetizing sustainability improvements in the procurement	Jeroen van Alphen Rijkswaterstaat, The Netherlands		
13:45 – 14:15	ProcuRE joint-cross border Pre-Commercial <i>Procurement of breakthrough solutions for 100%</i> <i>renewable energy supply in buildings</i>	Georg Vogt Empirica, Germany		
14:15 – 14:30	Verdygo design and construction technique that leads to a modular, sustainable sewage treatment plant with an above ground setup and a simple plug & play system	Corporate video Waterschapsbedrijf Limburg, The Netherlands		
14:30 - 14:40	Q&A			
14:40 14:45	Conclusions & closure	Stephan Corvers & Beatriz Gómez Fariňas		

Pre-Commercial Procurement of efficient construction and energy breakthrough innovative technologies

Katarzyna Lenart National Center for Research and Development Poland

Pre-Commercial Procurement of efficient construction and energy breakthrough innovative technologies

EAFIP WORKSHOP - WEBINAR 17/03/2023 r.

Narodowe Centrum Badań i Rozwoju

Barriers into challenges

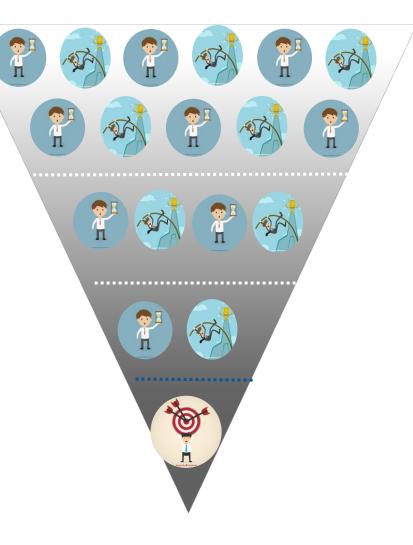
Pull innovations as Green Deal transformation tool: the purpose and scope of the projects are specified by the NCRD.

Green Deal transformation technologies should be:

- as final as possible,
- cheaper than traditional ones,
- possible to implement in domestic market.

3xWin Principle for the scope of PCP projects:

- for environment cleaner,
- for people healthier and cheaper,
- for economy and business more and local.



Green Deal transformation tool: the purpose and scope of the projects are specified by the NCRD

Competition of contractors and selection in subsequent stages – a guarantee of the effect

Growing level of financing during the project – effective spending of public funds

Selection of contractors based on the measureable parameters – effectiveness, process transparency, no complaints

Rzeczpospolita

Polska

Reduction of formal requirements – selection of the best technological projects

Technology and process innovations – the effects count

Full-scale demonstrators – the final confirmation of the technology

Technology benchmarking and promotion of good practices – effective stimulation of whole sectors of the market

Polska

Technology benchmarking and promotion of good practices – effective stimulation of whole sectors of the market

Technology licensing – wide distribution of solutions

Continuation of technology development (implementation of market support) by other institutions – technology deployment guaranteed

11

Rzeczpospolita Polska Narodowe Centrum Badań i Rozwoju

Project	Contracts	Number of Demonstrators	R&D Budget [mln PLN]
Innovative biomethane plant	3	1	49,5
Sewage treatment plant of the future	3	1	33,8
Process and energy efficient building construction	9	3	54,0
Heating plant of the future	7	1	52,8
Combined heat and power plant in the local energy system	10	1	59,0
HVAC for schools and houses	7	4	11,9
Micro-retention systems	4	4	9,6
Electric power storage	5	2	14,5
Heat and cold storage	9	5	15,9
Total:	57	22	301,1

Unia Europejska Europejski Fundusz

Rozwoju Regionalnego

green building can be cheaper than a conventional one

- Modularity and prefabrication: quality standariastion, short construction time, finished interiors, low price,
- **Green Deal:** positive energy balance, BMS system, zero emissions, closed cycle rainwater, recycled materials, low carbon footprint, adaptation to climate change
- **Dedicated building solutions:** adaptation to the needs of residents: Social Housing, Senior Housing, Single-family Housing

The aim of the project:

Breaking down all barriers to construction in terms of:

- Building methods,
- Climate protection and ecology,
- Demography challenges,
- Real housing needs.

The current state of social housing in Mysłowice

R&D Budget: **54,0 mln PLN**

Number of contractors: 9

Parts of the project: Social, Senior and Single-Family Housing

Źródło: Flaticon, Eucalyp

Mandatory requirements of the project:

- Prefabrication/modularity;
- Short construction time, energy efficiency;
- Scalability of solutions, turnkey finished interiors;
- BMS system;
- Tailored to the needs of seniors (day care centre, greenhouse, doctor's surgery, adaptation of flats for wheelchair access);
- Requirements defining the framework of the competition such as: number of flats, dimensions, standard of finish, surroundings of the building.

What Contractors Compete With:

- Lowest turnkey construction costs;
- Lowest operating costs for 30 years;
- Lowest energy consumption;
- Best energy balance;
- Highest level of recycling of building materials;
- Lowest carbon footprint of building materials;
- Quality of Demonstrators' architectural solutions.

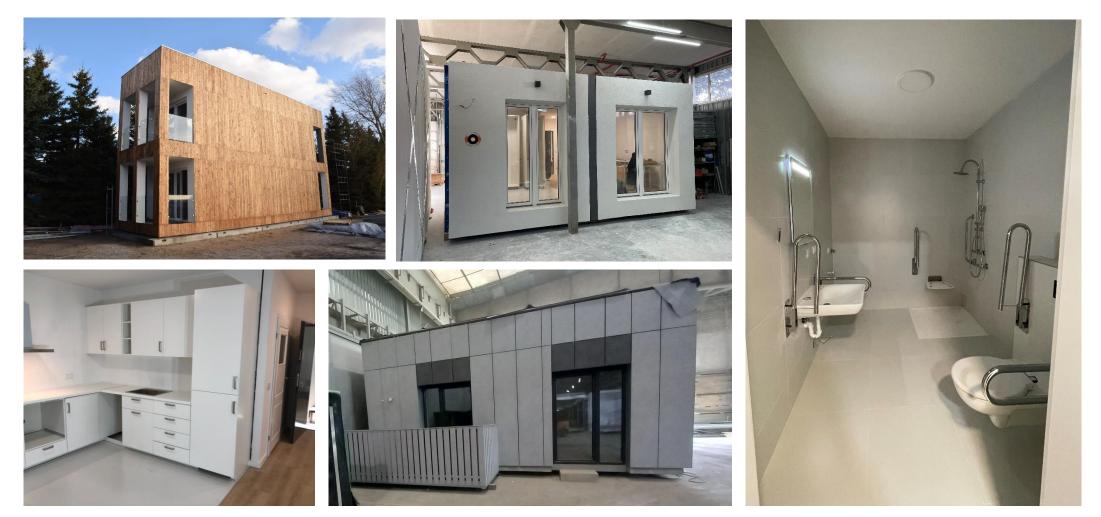
Strategic partners

• Municipalities that have made land available for the construction of Technology Demonstrators: Mysłowice, Rumia, Włocławek.

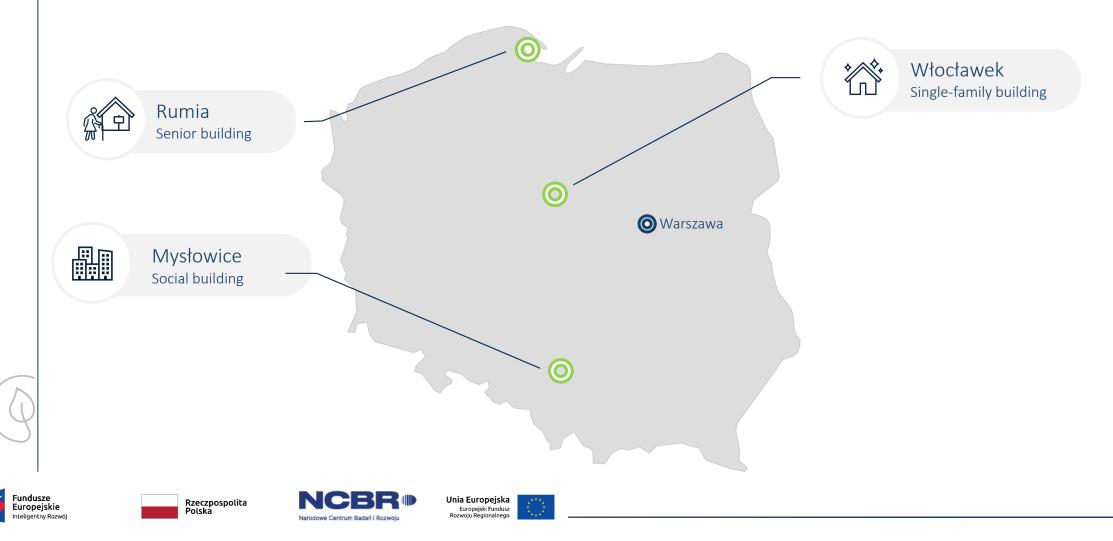
Costs of constructing buildings using the traditional method:

The average price of 1 m² of the total area of the building equipped in developer standard is approximately **PLN 6,000.00** gross. Average price of 1 m² of total area based on selected tender proceedings for multi-family buildings in 2022.

The average price of 1 m² of the total area of the building equipped 'turnkey' without the cost of landscaping is approximately **PLN 7,500.00 gross**. The cost of fit-out has been assumed at PLN 1,500.00 gross per 1 m² of total area.



Phase I effects



=

Phase II results - locations where technology demonstrators will be built: Single-family, Senior and Social builling.

Technology demonstrators: Social Building, Senior Building and Single-Family Building.

Phase II effects – technology demonstrator of Social Building

https://www.youtube.com/watch?v=e4B77bOQFDk

the biogas plant can stably produce biomethane from a wide range of waste materials without causing a nuisance to the environment

Key challenges:

- Management of waste from agriculture and the agri-food industry
- Possibility to use various substrates from the agri-food industry in the technological process
- Stable production of biomethane of natural gas/bioCNG/bioLNG quality
- Lack of odours throughout the entire process
- Energy self-sufficiency
- Closure of the biogenic cycle in nature, "zero waste" -> closed loop economy

Strategic partner: Poznan University of Life Sciences Brody Experimental Station

Rzeczpospolita

Polska

R&D Budget: 49,5 mln PLN

Number of contractors: 3

Źródło: Flaticon, Eucalyp

What Contractors Compete With:

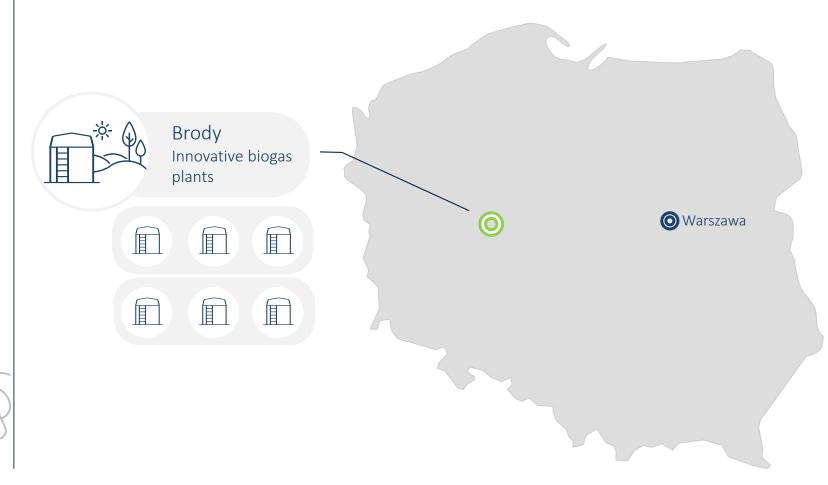
- Methane production capacity
- Biomethane production capacity
- Phase I and Phase II development costs
- Commercialisation revenue
- Quality and optional requirements

Mandatory requirements:

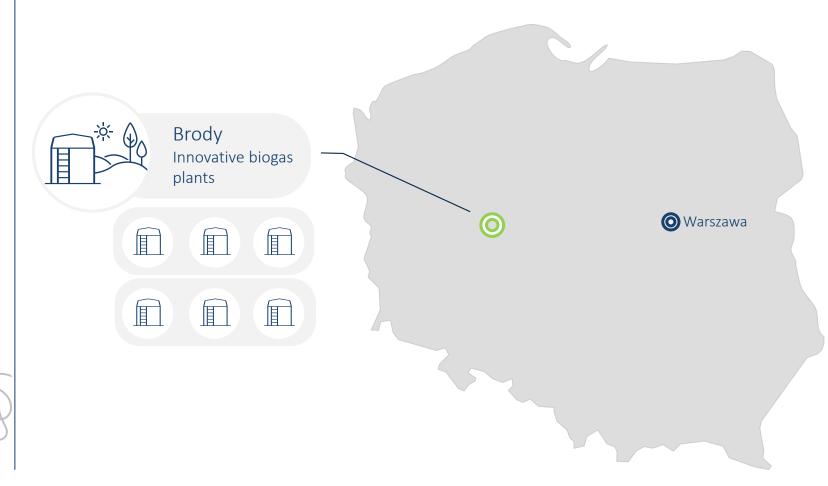
- Substrate versatility of the technology;
- Odourless technology;
- Biomethane production;
- Installation with a capacity equivalent to 499kW;
- Bio-fertiliser production.

Strategic Partner: Poznan University of Life Sciences

- Provides real estate for the construction of Micro-Installations and Technology Demonstrator, implementation of associated infrastructure, utilities and laboratory analyses of substrates and digestate from Micro-Installations;
- Responsible for conducting Micro-Installations Tests, built at the Experimental Station in Brody and Technology Demonstrator Tests.



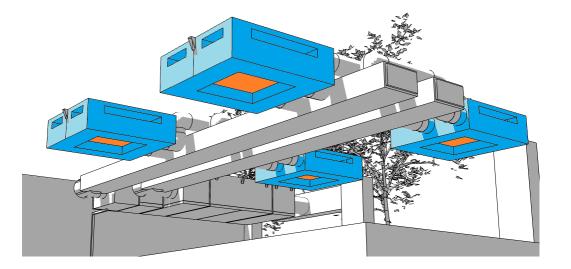
Results of R&D phases - location of six micro-installations (phase I), and one full-scale biogas plant (phase II)



Results of R&D phases - location of six micro-installations (phase I), and one full-scale biogas plant (phase II)

Construction of Micro-Installations in Brody

w kategorii PROJEKT BIOGAZOWY


Narodowego Centrum Badań i Rozwoju

VI Kongres Biogazu i Biometanu CKS OSSA 13-14-12-2021 r

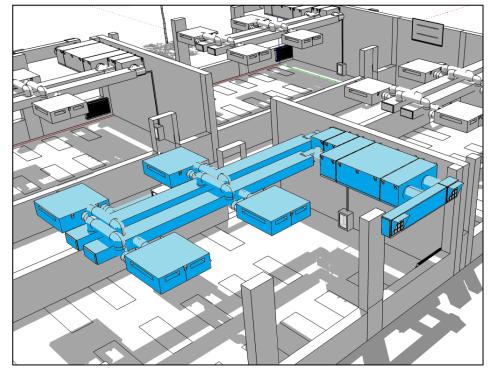
ventilation can be installed in existing (old) buildings, resulting in clean and fresh air without loss of energy

Kluczowe wyzwania projektu:

- Development of distributed ventilation/recuperation systems ensuring: no heat loss, appropriate CO2 and humidity levels, highly efficient air filtration eliminating contaminants such as: particulate matter, organic compounds, viruses and bacteria
- Indispensable for schools (too high CO2 levels)
- Indispensable for multi-family houses (heat loss = increased heating costs

Missing element in the process of thermal modernisation of buildings

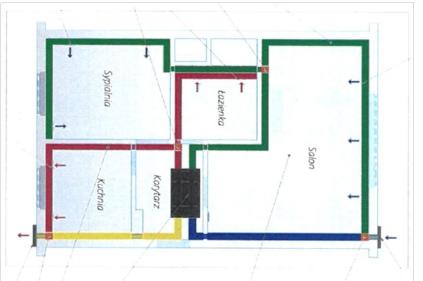
R&D Budget: 11,9 mln PLN		
Number of Contractors: Part 1. 4 Contractors Part 2. 3 Contractors Parts of the project: 2 Part 1. HVAC for classrooms Part 2. HVAC for apartments	 Mandatory requirements defining a classroom/apartment; number of persons; occupancy schedule; outdoor and indoor air pollution; parameters of the test environment; floor plan of the room with measuring points. 	 What contractors compete with: Environmental air quality; Microbiological air quality; Ventilation efficiency; Heat and cooling recovery; Supply air humidity; Electricity consumption; Sound level; Draught risk; Total costs.
Í faticon, Eucalyp	Testing Partner: Politechnika Śląska 	



Part 1.

HVAC for Classrooms

Technology tests are underway - results coming soon!



Part 2.

HVAC for apartments

Technology tests are underway - results coming soon!

Narodowe Centrum Badań i Roz

NCBR

Narodowe Centrum Badań i Rozwoju

Thank you!

Sustainable Reconstruction of the Motorway A6 developing calculation tools and monetizing sustainability improvements in the procurement

Jeroen van Alphen Rijkswaterstaat The Netherlands

Rijkswaterstaat Ministry of Infrastructure and Water Management

The use of:

- Functional Specification
- Best Price Quality Ratio
 - DuboCalc
- Environmental Cost Indicator
 - The A6 Almere
 - And future steps

Incorporating sustainability into Infrastructure projects The NL national perspective

Jeroen van Alphen Project leader SPP-criteria <u>www.sppcriteria.co</u> Jeroen.van.alphen@rws.nl +316 1537 9668

17-03-2023

SPP does not start with a "P"

- Refuse, Reduce etc.
- Functional Specifications
- Monetizing of environmenta impacts
- B.P.Q.R.



Functional specifications

- 1.Want vs Need
- 2. Functional specifications
 - No specific technical solutions demanded!!
 - Conditions
- 3.All decisions based on:
 - Lifecycle Costing;
 - Total cost of Ownership.

4.D&C and DBFM(O) contracts

Best Price Quality Ratio (BPQR)/ Most Economically Advantageous Tender (MEAT)

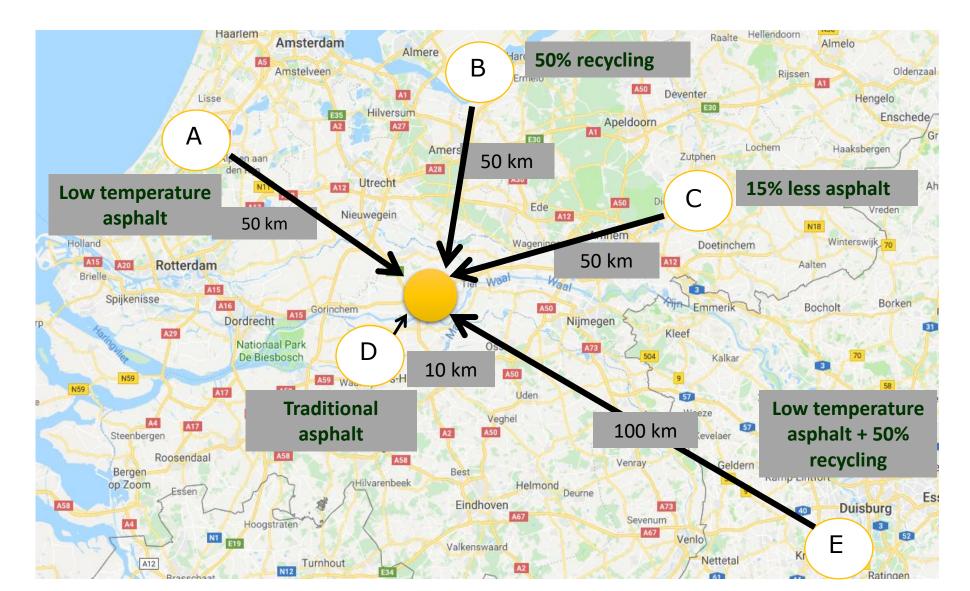
- Selection of tenders based on a combination of price and quality
- Quality includes for instance:
 - Public oriented approach ('less hindrance')
 - Risk management
 - Sustainability
- The criteria must:
 - Create competition between tenderers
 - Be easy to understand for tenderers
 - Show differences in quality
- Two instruments
 - CO₂ performance ladder and DuboCalc

BPQR/ MEAT calculation

How do we calculate fictive discount?

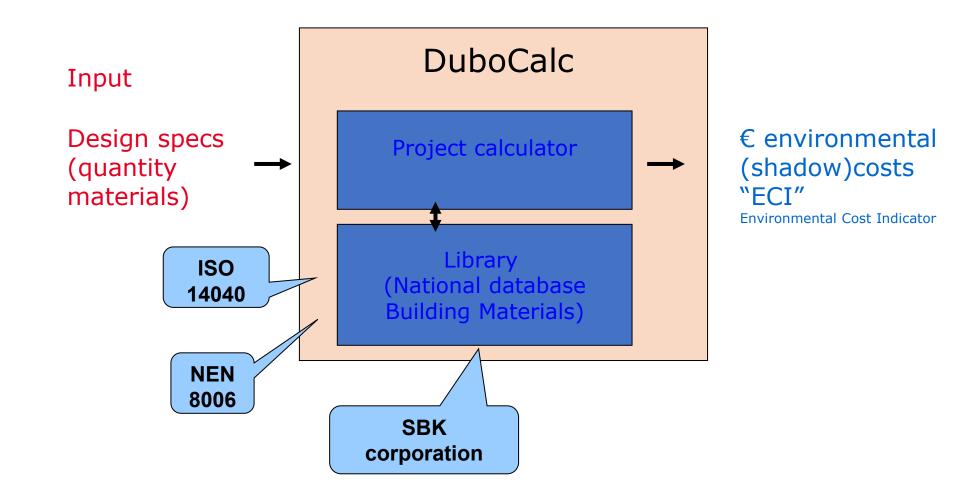
Du = Duurzaam = Sustainable Bo = Bouwen = Construction Calc = Calculator

"A software tool to measure sustainability of a project(design) in an objective and standardized manner, to be used as awarding criterion in a procurement process"



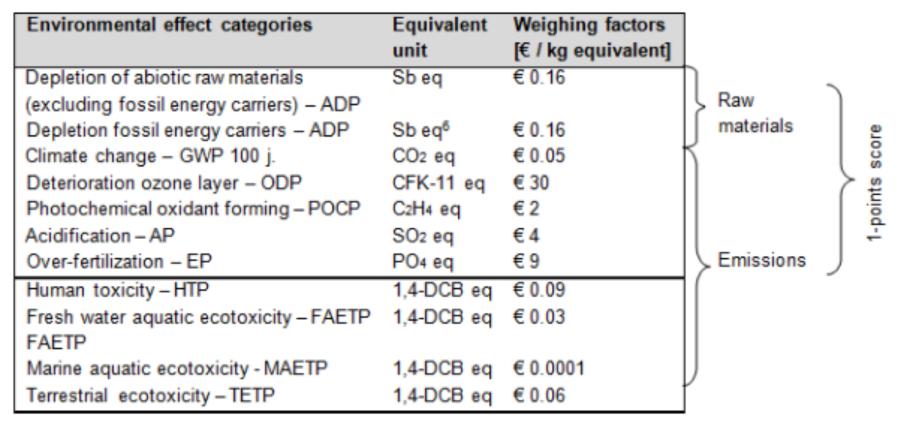
About DuboCalc

- DuboCalc calculates the environmental impacts of the different infrastructure designs, based on material and energy use during the whole lifecycle, this is called the <u>Environmental Cost Indicator (ECI)</u>
- DuboCalc uses the method of the environmental Life Cycle Analysis (LCA)
- Objective comparison of tender-bids
- RWS will use this LCA-instrument by judging the environmental impact of the bids (award criterion) (BPQR/ MEAT)

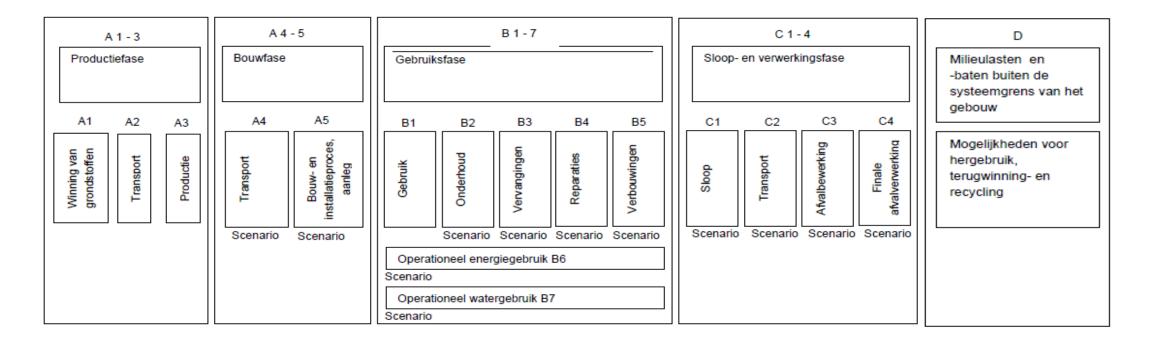


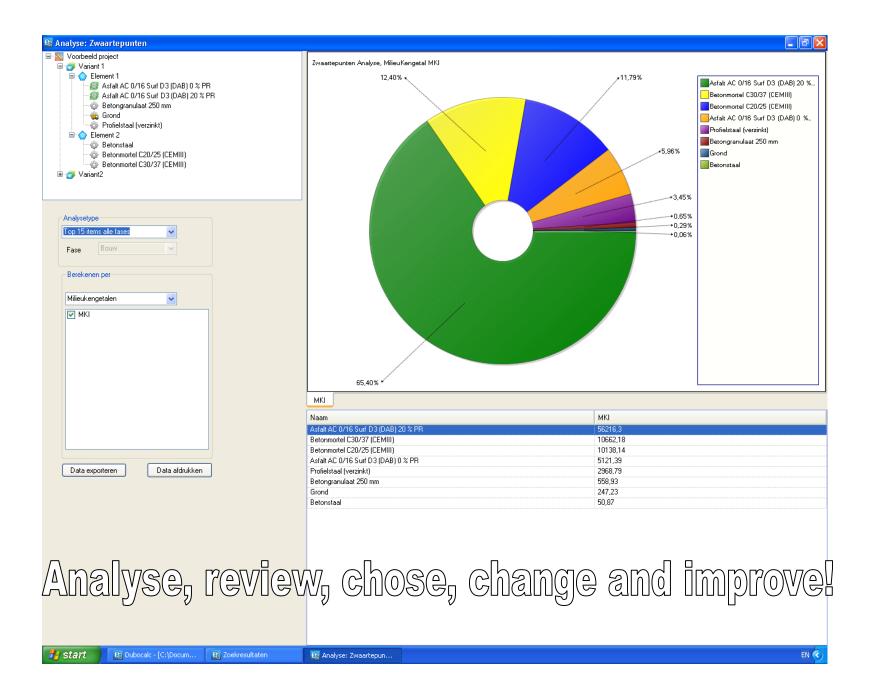
Which asphalt is more sustainable?

Dubocalc how does it work?


• DuboCalc calculates the emission of every step in the lifecycle.

Life Cycle Analyses


An ECI value contains 11 environmental effects, each with a shadow price



Life Cycle Analysis method: EN15804

DuboCalc calculates the emission of every step in the lifecycle.

Using DuboCalc

- 1. As an awarding criterion in BPQR. The bidder with the lowest ECI (the most sustainable design) is best valued.
- 2. As a process requirement: optimizing during the design process.
- 3. As an optimizing designing tool and verification tool
- 4. As a minimum performance requirement (expressed in ECI).

Reconstruction Motorway A6 Almere

- Smart transportation solutions
- Smart use of asphalt (thicker foundation, thinner layer of asphalt)
- Generating its own energy (Energy neutral)
- Use of recycled materials
- Using new materials

Winner Tender Procedure of the year



PROCURA+ European Sustainable Procurement Network

DuboCalc Light; Next steps: Maximum ECI values

Asfaltmengsel	totaal
1. AC surf zonder PR	8,1
2. AC Surf met 30% PR	7,4
3. AC surf, mod. bit.	9,8
4. AC surf, mod. bit. 30% PR	8,8
5. AC bin/base 50% PR[1]	4,9
6. AC bin/base 50% PR met gemodificeerd bitumen	5,5
7. ZOAB Regulier	8,1
8. ZOAB Regulier+ / DZOAB	8,5
9. DZOAB 30% PR	7,6
10. 2L ZOAB Toplaag mod. bit.	9,8
11. 2L ZOAB Onderlaag	7,9
12. 2L ZOAB onderlaag 30% PR	7,3
13. SMA 8-11	8,8
14. SMA 5	8,8
15. Geluidsreducerende SMA	
deklaag[2]	10,4
16. Waterbouw asfaltbeton	14,6
17. Open steenasfalt	12,9
18. Gietasfalt, waterbouw	19,3
19. Asfaltmastiek, waterbouw	24,4

Figuur 1. Daling boven- en ondergrens MKI-waarde asfalt (in fictieve getallen)

Rijkswaterstaat Ministry of Infrastructure and Water Management

The use of:

- Functional Specification
 - DuboCalc
- Environmental Cost Indicator
 - Future steps

Any Questions?

Incorporating sustainability into Infrastructure projects The NL national perspective

Jeroen van Alphen Project leader SPP-criteria & SPP-criteria tool Jeroen.van.alphen@rws.nl +316 1537 9668

17-03-2023

ProCURE joint-cross border Pre-Commercial Procurement of breakthrough solutions for 100% renewable energy supply in buildings

Georg Vogt Empirica Germany

procuRE Joint Cross-Border Procurement

17.03.23 EAFIP - Construction, Infrastructure Security & Energy Innovations in ICT Related Projects

Pre-commercial Procurement of Breakthrough Solutions for 100% Renewable Energy Supply in Buildings

Y	in		
@procure_pcp	bit.ly/procure-LI	procure-pcp.eu	

Agenda

1 procuRE Aim & Scope

- 2 procuRE Status & Steps taken
- 3 Suppliers and Innovations
- 4 Lessons & Next Steps

Backup: Background on PCP and PPI Instruments

Barcelona, Spain	
Eilat, Israel	6 Procurers - 6 Countries responsible for 21,000 Buildings
Istanbul, Turkey	1 Challenge: eliminating fossil off-side supply in existing buildings
Nuremberg, Germany	€7.68 mio. for external R&D services
Velenje, Slovenia	Budget spent in 3 phase competition
Vila Nova de Gaia (Porto), Portugal	3 Schools - 3 Offices

procuRE tackles core bottle necks for Renovation Wave

Why procuRE?

MACRO-LEVEL (EU, Member States)

Renovation rate too low

Workforce already limited

Renovations do not deliver enough € and CO₂ savings

Investors perceive complex projects as risky

Great complexity (technologies, integration, organisation)

MICRO-LEVEL (Cities)

WHY?

Energy supply, resilience, energy dependency, knock-on effects ...

procuRE searches for a pivotal change on how renovations are planned and done

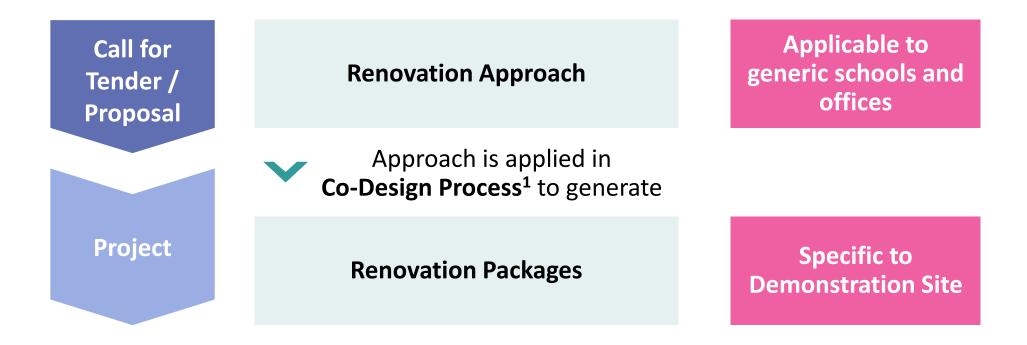
What does procuRE want to achieve?

Active approach to building operation

Less work needed on-site

Maximum local RES as far as possible

One-stop-shop with clever Co-Design Procedure


Service contracting and financing to reduce the burdens and risks

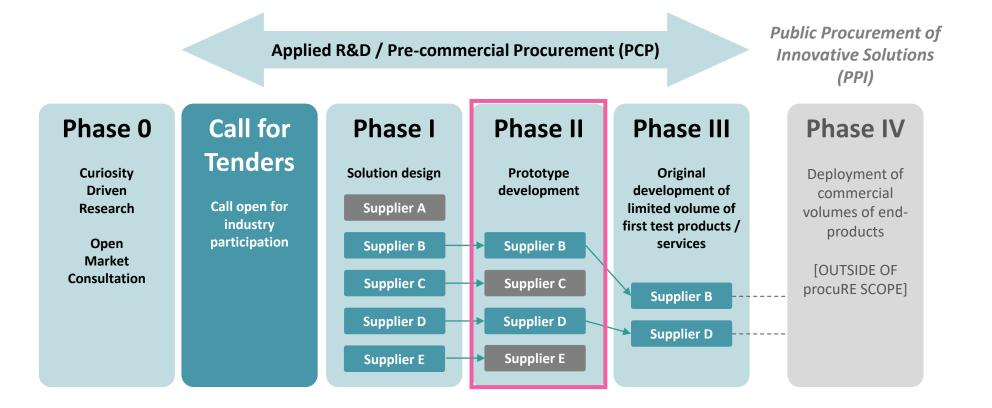
procuRE develops two replicable innovations which are tested in the project through sites

How? Expected Outcome

Agenda

1 procuRE Aim & Scope

2 procuRE Status & Steps taken


- 3 Suppliers and Innovations
- 4 Lessons & Next Steps

Backup: Background on PCP and PPI Instruments

procuRE is in Phase II just before Call-off for Phase III

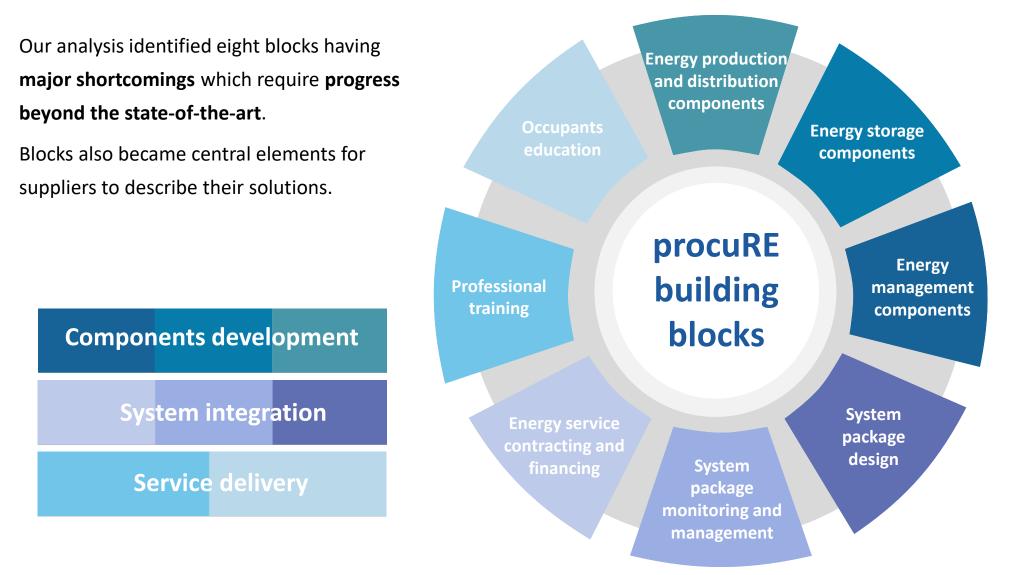
Status procuRE

Lead Procurer: KSSENA, overall co-ordination of the procurers, acting on their behalf vis-à-vis the suppliers

- Procurers (also Buyers Group: Barcelona, Eilat, Istanbul, Nuremburg, Energaia)
- Suppliers (later Contractors) = organisations or consortia competing in the PCP process

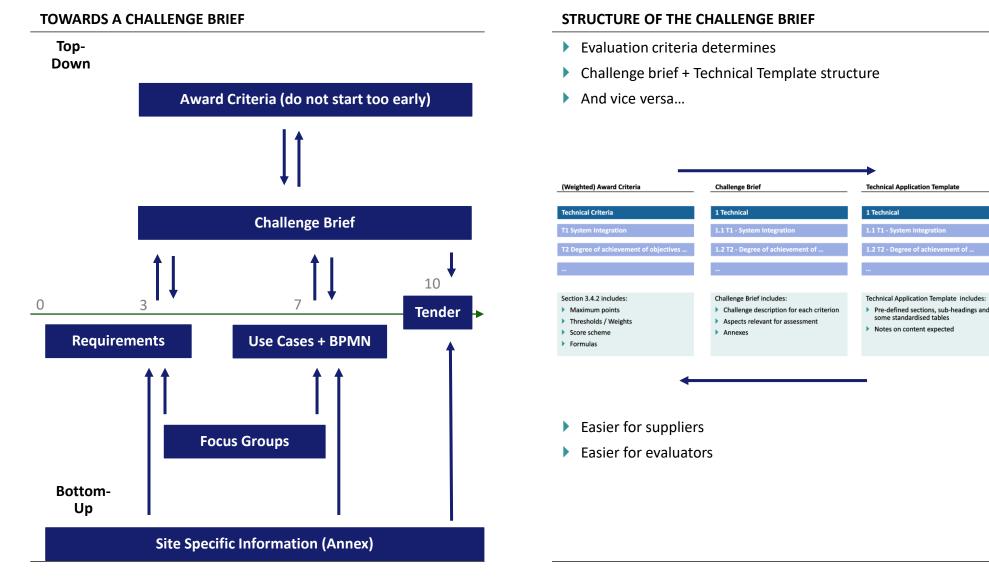
procuRE is technology neutral

Phase 0: Solution design


Suppliers define the solution ...any constellation of technologies is thinkable if it is applicable to other buildings, sustainable, etc. ...

Buyers Group defines the (very complex) problem and award criteria

procuRE structures the common challenge for R&D services along eight building blocks


Phase 0: Building blocks

Our approach follows two principles: 1) continuously develop with clear milestones; 2) the viewpoint on work (and of readers) matters

Phase 0: Challenge Brief creation

The Renovation Approach is continously improved; funding and time increases with each phase

Summary procuRE conditions

Process phase	Results and activities expected		Buildings addressed by each supplier	Timeframe	N. of contractors selected (min)	Financing to each contractor (max)	
Call for Tender Proposal	Renovation Approach	>	Concept design of Renovation Packages	2 reference buildings in 2 climates	3 Months (+2M Evaluation)	Open	-
Phase I	Continuous development through co- design approach	>	Schematic design of Renovation Packages	6 Demonstration Buildings	M1-M3 (3)	6	€ 192,000
Phase II		X	Detailed design of Renovation Packages and small scale tests	6 Demonstration Buildings	M4-M11 (8+1)	4	€ 576,000
			V la stallation and				
Phase III	Continuous commissioning	Renovation	3 allocated Demonstration Buildings	M12-M27 (16)	2	€2,112,000	
	Final Version		Packages	Dununigs			

Installations are to begin in the summer

Phase III: procuRE demonstration sites

VELENJE, SLOVENIA

- Primary school + linked Sports hall
- Envelope 20 years old
- Space heating: oil + electric

NUREMBERG, GERMANY

- Primary school + nursery
- Built 2015 to passive-house standards
- Natural gas condensing boiler (radiators)
- No RES; basic HVAC control system

VILA NOVA DE GAIA (PORTO), PORTUGAL

- Primary school + nursery
- Built 2014 to national standards
- Natural gas boiler, heat pump for cooling
- Small solar thermal; advanced control system for building

BARCELONA, SPAIN

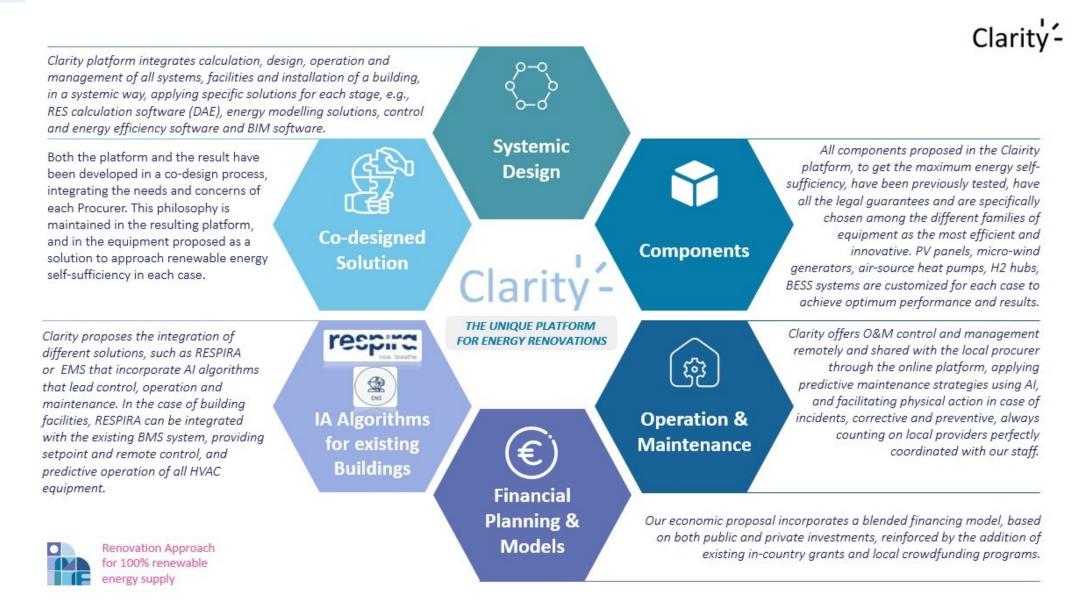
- Offices + data centre
- 2010 upgrade to envelope (1850)
- Central heat pump with several splitters
- AC for data needs upgrade, monitoring installed since 2015

ISTANBUL, TURKEY

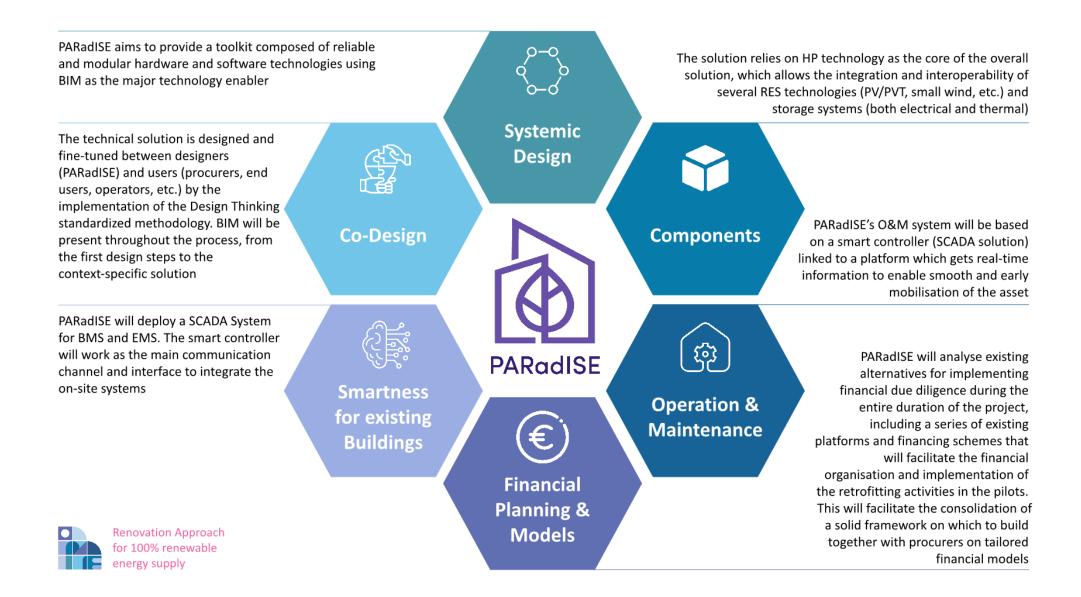
- Office + bakery school
- Built 2015
- Variable Refrigerant Flow system
- No RES or monitoring

EILAT, ISRAEL

- Future: Office + Maker + Exhibition
- Old terminal and tower Built 1960
- Upgrades expected before phase III ¹
- Central HVAC, local AC systems, chillers

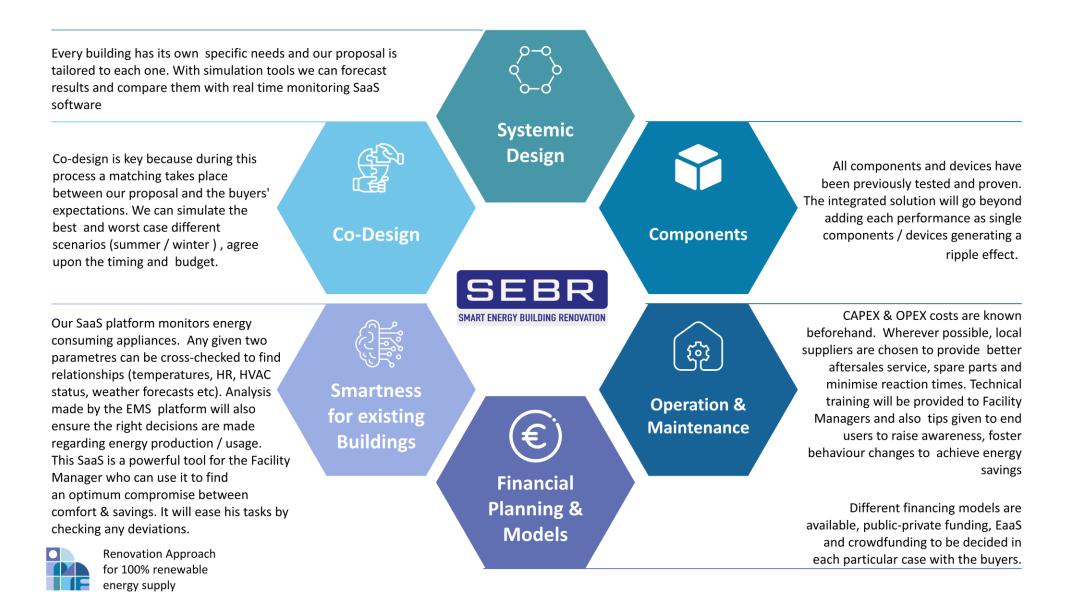


Agenda


- 1 procuRE Aim & Scope
- 2 procuRE Status & Steps taken
- 3 Suppliers and Innovations
- 4 Lessons & Next Steps

Backup: Background on PCP and PPI Instruments

Industry player coming with background and developing process enabling them on smaller sites



Diverse research with focus on integrating multiple innovative methods

Multiple SMEs offering innovative components building a systemic approach

Agenda

- 1 procuRE Aim & Scope
- 2 procuRE Status & Steps taken
- 3 Suppliers and Innovations
- 4 Lessons & Next Steps

Backup: Background on PCP and PPI Instruments

A lot can be controlled, some are beyond your control and some depend on your challenge

Lessons

THESE A	ARE "NOT"	CHALLENGES
---------	-----------	------------

CHALLENGES (OR WHAT TO KEEP IN MIND)

Cross-border cooperation / OMCs incl. outside EU (> good project management)

Always: Avoid tendering during a crisis

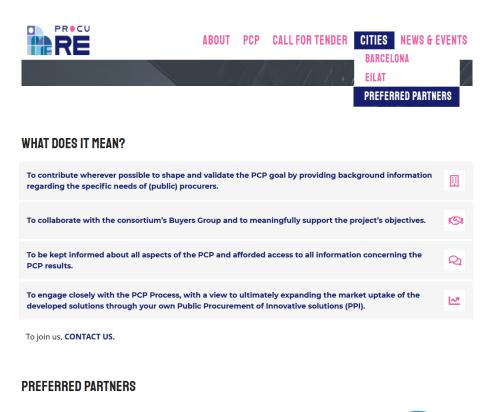
Defining the common challenge (> good research & support & moderation) If you can: try to split process innovation from technology innovation

Evaluating in a group (>good process & challenge brief) procuRE specific: Talk to all accountants early (i.e. VAT)

Through Innovation Procurement horizontal & systemic challenges can be tackled no one will address otherwise

Any organisation on the demand side is invited to become a follower

Next steps


HOW TO BECOME A PREFERRED PARTNER?

- If you are interested in procuRE approach, become a preferred partner to:
 - Collaborate with the Buyers Group
 - Get access to all info about PCP results
 - Visit the Pilot Sites and receive reimbursement of travel cost to Open Pilot Days (subject to availability)

Steps

- Simply state your interest via mail to procure@empirica.com
- Please include:
 - Brief motivation (goals related to procuRE)
 - Logo

PREFERRED PARTNERS ON OUR WEBSITE

Agenda

- 1 procuRE Aim & Scope
- 2 procuRE Status & Steps taken
- 3 Suppliers and Innovations
- 4 Lessons & Next Steps

Backup: Background on PCP and PPI Instruments

PCPs create incentives in domains where mature solutions are missing and reduce risks for both procurers and suppliers to innovate

Core features of Pre-Commercial Procurement (PCPs)

WHAT ARE THE BENEFITS FOR SUPPLIERS?

Instrument for public procurement of R&D services

Create opportunities for companies to gain leadership in new markets

Public procurers act as demanding customers

Provides a large enough demand to incentivise industry to invest in wide commercialisation

Tool for innovation (EC sees the need but no offer on market)

Development in stages and testing of innovative ideas under **real world conditions**

Risk-benefit sharing under market conditions

Suppliers retain **IPR ownership**, procurers gains access under limited conditions

Interact closely with six procurers operating 21,000 buildings

Visibility on EU-Level

Pre-Commercial-Procurements (PCP) create a new, competitive market for Research and Development (R&D) services and development

Pre-Commercial Procurement vs. Traditional Public Procurement

TRADITIONAL PROCUREMENT
Individual Procurement (single department)
Low degree of solutions' innovation
Mature product/service: immediate/short-term
Single contract: one supplier
Often based on existing IPR
National public procurement rules apply
Development in one phase

PCP is for both, buyers and suppliers, a succesful instrument benefiting SMEs in particular

Background on Innovative and Pre-Commercial Public Procurement

Opening a route-to-the market for new market players	S S S S S S S S S S S S S S S S S S S
Impact on stimulating cross-border company growth	8-8
Bringing research results to the market	
Contribution to growth and jobs in Europe	S. S
Steady business growth	
Deployment of solutions by procurers from the project	
Georg Vogt	

Georg.vogt@empirica.com https://www.linkedin.com/in/Georg-vogt-energy/

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 963648. The sole responsibility for the publication lies with the editor and does not necessarily reflect the opinion of the European Commission. The European Commission is also not responsible for any use that may be made of the information contained herein.

Georg Vogt

emplirica

Head of ICT Innovation Energy

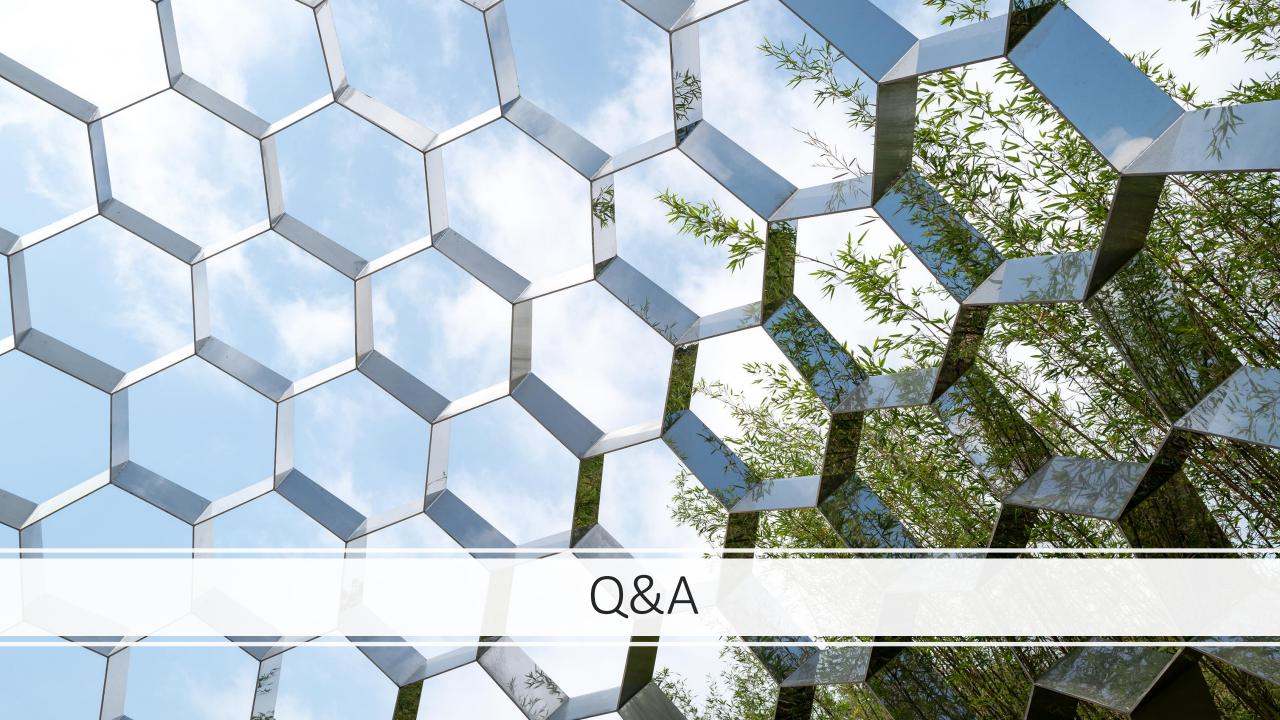
+49-228-98530-32 georg.vogt@empirica.com

in bit.ly/procure-LI

procure-pcp.eu

We research, scale up and implement smart and digital solutions

empirica



Verdygo design and construction technique

that leads to a modular, sustainable sewage treatment plant with an above ground setup and a simple plug & play system

> Corporate video Waterschapsbedrijf Limburg The Netherlands

Conclusions & closure

Conclusions

- Innovation Procurement can be used strategically to pull innovative green technologies.
- R&D procurements help companies to co-create and test their solutions immediately with potential customers which shortens time to market. They provide also a first customer reference which can help attract financial investors to scale up your business.
- Public procurements of innovative solutions provide large scale sales contracts in which public buyers act as early adopters of innovations. This helps companies expand their business widely and diversify their offering to new market segments.
- ICT tools applied can optimize the measurement and performance in projects.

Apply for free assistance

For more information – see: <u>www.eafip.eu</u>

Or apply directly via: <u>https://ec.europa.eu/eusurvey/runner/EAFIP2023</u>

Thank you for your attention

Corvers Procurement Services BV

The Netherlands

Tel: +31 73-612 6566

info@corvers.com

www.corvers.com

For any questions regarding EAFIP-Assistance and/or applying for free assistance, please contact:

Analucia Jaramillo Tel: +31 6-20552773 <u>a.jaramillo@corvers.com</u> www.eafip.eu

EAFIP WORKSHOP-WEBINAR HOSTED BY IPROCURENET IN BRATISLAVA

CONSTRUCTION, INFRASTRUCTURE SECURITY & ENERGY INNOVATIONS IN ICT RELATED PROJECTS

17th March 2023

Q&A

Pre-Commercial Procurement of efficient construction and energy breakthrough innovative technologies

Speaker: Katarzyna Lenart, National Center for Research and Development, Poland

	Question	Answer
1.	Could you give an example of award criteria used in the project on the construction of social housing?	 In the project we are using four types of requirements (criteria): Mandatory requirements, that must be obligatory met by the technology, Competitive requirements – technological parameters, by which contractors compete with each other, Optional requirements, that the technology can meet optionally (it's contractor's choice), Quality requirements, regarding the quality of technology. The most important ones are the competitive requirements. In this particular project: Lowest turnkey construction costs; Lowest operating costs for 30 years; Lowest energy balance; Highest level of recycling of building materials; Quality of Demonstrators' architectural solutions.
2.	Are there any lessons learned regarding the strategic partnership with Poznan University of Life Sciences for the micro-installation testing in the biomethane plant project?	Apart from providing access to the ground for construction of microinstallation, the strategic partner must provide professional personnel as well as laboratory and logistic facilities - this was crucial for conducting the tests. Thanks to such preparation of the strategic partner, the tests allowed to obtain full information about the operation of the micro-installation especially from the technological process side. The challenge was to deliver waste material to the microinstallations each day, however strategic partner took care of the process with its own equipment.

Sustainable Reconstruction of the Motorway A6, *developing calculation tools and monetizing sustainability improvements in the procurement*

Speaker: Jeroen van Alphen, Rijkswaterstaat, The Netherlands

	Question	Answer
1.	Is the impact of the distance of the supplier from the place of the project construction taken into account in the award criteria or in the DuboCalc tool?	 a) All transport distances are included as a non-changeable default value in Dubocalc. This means they are included in the total MKI value. b) The default value is fixed in the data and cannot yet be changed, but this will be possible in the future (within 2 years). c) At this moment this means that if you want a different value, you have to make a new LCA with a different value and/or means of transport for this. d) The MKI value of the entire project can be used as an award criterion. DuboCalc tutorials about how it works (in Dutch with English subtitles) are available here.
2.	Do you have any recommendations to define functional requirements?	Information about functional specifications (in Dutch, and possible to translate in Google) can be found <u>here</u> , <u>here</u> and <u>here</u> .

ProcuRE joint-cross border Pre-Commercial Procurement of breakthrough solutions for 100% renewable energy supply in buildings

Speaker: Georg Vogt, empirica, Germany

	Question	Answer
1.	Did ProcuRE define different use cases depending on the type of buildings in the 6 different countries?	Yes, during research and design use cases were defined to describe what different user groups needed in order to be able to operate the building as efficiently as possible also taking current local energy production into account.
2.	Could you give an example of security measures foreseen in phase 3 for the installations in the procuRE demonstration sites?	All installations have to comply with the respective national building code with regard to physical installations. As to ICT related security, state-of-the art solutions need to be deployed. In

	principle, a minimum amount of data will be required from users as the systems will be able to self-regulate rather than requiring individual control.
--	---

Verdygo design and construction technique that leads to a modular, sustainable sewage treatment plant with an above ground setup and a simple plug & play system

Corporate video, Waterschapsbedrijf Limburg, The Netherlands

<u>Verdygo - A modular and sustainable waste water treatment plant</u> <u>A flexible plant (verdygo.com)</u>